If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+3x-1050=0
a = 6; b = 3; c = -1050;
Δ = b2-4ac
Δ = 32-4·6·(-1050)
Δ = 25209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25209}=\sqrt{9*2801}=\sqrt{9}*\sqrt{2801}=3\sqrt{2801}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{2801}}{2*6}=\frac{-3-3\sqrt{2801}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{2801}}{2*6}=\frac{-3+3\sqrt{2801}}{12} $
| 2(m-3)=3m+3 | | 32=x+0.29x | | -16=-6x+4(x-7) | | 13-14y+y^2=0 | | (x-12)/6+14=9+6 | | 64w+56=56w | | 8x-0.5=6 | | 6x+8x+1/4=383/4 | | 5(-3x-2)-(x-3)=-4(4x+5)+13=666 | | 16-(-4y)=-28 | | 6x-5.45=-1.31 | | 8x-5.66=-3.18 | | 133(y+9)=12y+13 | | 0=6-2p | | (2x/2x+4)+(15/5x+10)=(24/6x+12) | | 0=4x^2+18x-252 | | -6=-2/9u | | n/6-4=-1 | | 10x-8=-12x-8 | | n/2-7=1 | | n/4+1=11 | | -b+4b=-8b-b | | x+11/12=3/8 | | 6x3+42x^2=0 | | -7=3(w+3)-7w | | 14y+44=100 | | 114=-6d+6 | | 114=6d+6 | | 20=3r-7 | | 7t=51 | | 3g=22 | | 3/9-x=1/12 |